Центр индивидуальной подготовки
школьников и студентов
40-33-54

ЗАДАНИЕ 19 - 145

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может

а) добавить в кучу один камень,

б) добавить в кучу два камня,

в) добавить в кучу три камня,

г) увеличить количество камней в куче в два раза.

Игра завершается в тот момент, когда количество камней в куче превышает 33. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 34 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 33.

Найдите значение S, при котором Ваня выигрывает своим первым ходом при любой игре Пети.





Задание 20

Для игры, описанной в задании 19, найдите минимальное и максимальное значение S, при котором у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

− Петя не может выиграть за один ход,

− Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.





Задание 21

Для игры, описанной в задании 19, найдите значение S, при котором одновременно выполняются два условия:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети,

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.