Центр индивидуальной подготовки
школьников и студентов
40-33-54

ЗАДАНИЕ 19 - 137

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в любую кучу один камень или увеличить количество камней в любой куче в два раза. Игра завершается в тот момент, когда сумма камней в кучах становится не менее 30. В начальный момент в первой куче было K камней, а во второй – S камней, 1 ≤ K ≤ 29, 1 ≤ S ≤ 29.

Сколько существует пар (S, K), таких что Ваня выигрывает первым ходом при любой игре Пети?





Задание 20

Для условия игры из задания 19, ответьте на вопрос.


При K=6, найдите минимальное и максимальное значение S, при котором у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

− Петя не может выиграть за один ход,

− Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания





Задание 21

Для условия игры из задания 19, ответьте на вопрос.


Сколько существует пар (S,K), при котором одновременно выполняются два условия:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети,

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.