Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в любую кучу один камень или увеличить количество камней в любой куче в два раза. Игра завершается в тот момент, когда сумма камней в кучах становится не менее 30. В начальный момент в первой куче было K камней, а во второй – S камней, 1 ≤ K ≤ 29, 1 ≤ S ≤ 29.
Сколько существует пар (S, K), таких что Ваня выигрывает первым ходом при любой игре Пети?
Задание 20
Для условия игры из задания 19, ответьте на вопрос.
При K=6, найдите минимальное и максимальное значение S, при котором у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:
− Петя не может выиграть за один ход,
− Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.
Найденные значения запишите в ответе в порядке возрастания
Задание 21
Для условия игры из задания 19, ответьте на вопрос.
Сколько существует пар (S,K), при котором одновременно выполняются два условия:
– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети,
– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.