Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в любую кучу один камень или добавить добавить в любую кучу столько камней, сколько их в данный момент в другой куче. Игра завершается в тот момент, когда общее количество камней в двух кучах становится не менее 79. В начальный момент в первой куче было 9 камней, а во второй – S камней, 1 ≤ S ≤ 69.
Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Назовите минимальное значение S, при котором это возможно.
Задание 20
Найдите минимальное и максимальное значение S, при котором у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:
− Петя не может выиграть за один ход,
− Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.
Найденные значения запишите в ответе в порядке возрастания.
Задание 21
Найдите значение S, при котором одновременно выполняются два условия:
– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети,
– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.