(А. Богданов) Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит три кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч 3, 13 или 23 камня. Игра завершается в тот момент, когда в сумме в кучах будет не менее 73 камней. Победителем считается игрок, сделавший последний ход. В начальный момент в кучах было (2, S, 2S) камней, 1 ≤ S ≤ 23.
При некотором значении S Ваня одержал победу свои первым ходом после неудачного хода Пети. Укажите минимальное значение S, при котором это возможно.
Задание 20
Для игры, описанной в предыдущем задании, найдите минимальное и максимальное значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:
− Петя не может выиграть за один ход,
− Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.
Найденные значения запишите в ответе в порядке возрастания.
Задание 21
Для игры, описанной в задании 19, найдите два наибольших значения S, при которых одновременно выполняются два условия:
– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети,
– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.