Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может
а) добавить в кучу 10 камней,
б) увеличить количество камней в куче в два раза.
Игра завершается в тот момент, когда количество камней в куче становится не менее 82. Игрок, сделавший ход, который привел к значению 82 или более, считается проигравшим. В начальный момент в куче было S камней, 1 ≤ S ≤ 81.
Известно, что Петя одержал победу, совершив один ход за игру. Найдите минимальное значение S, при котором Петя гарантированно одерживает победу для описанной стратегии.
Задание 20
Для игры, описанной в задании 19, найдите все значения S такие, при которых Ваня совершает не более одного хода и выигрывает. При этом у Вани нет стратегии, которая позволяла бы ему гарантированно выиграть, не совершив ни одного хода. В качестве ответа приведите минимальное и максимальное значения S.
Задание 21
Для игры, описанной в задании 19, известно, что Петя выигрывает, сделав не более двух ходов. Укажите минимальное значение S, если известно, что Петя не может гарантированно выиграть, сделав один ход.